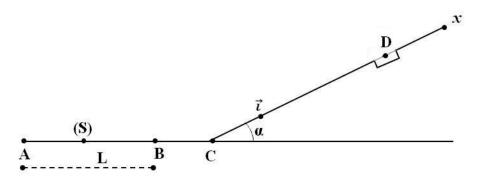
Pays: Côte d'Ivoire Année: 2014 Session: Physique – Chimie

Série : Bac, série D Durée : 3 h Coefficient : 4

EXERCICE 1 (5 points)


Dans tout l'exercice, on suppose que les frottements sont négligeables. On donne $g = 10 \text{ m/s}^2$. Une piste de jeu de kermesse est constituée de deux parties :

- la partie AC est horizontale;

- la partie CD de longueur l = 1 m, fait un angle $\alpha = 30^{\rm e}$ avec l'horizontale.

Pour gagner, le joueur doit faire arriver le solide (S) de masse m = 5 kg dans le réceptacle en D en partant du point A.

Un élève de Terminale pousse le solide (S) à partir du point A sur une distance L = AB = 4.5 m, en exerçant une force \vec{F} constante et horizontale pendant une durée $\Delta t = 3$ s. Le solide part du point A sans vitesse (voir figure ci-dessous).

1- Étude du mouvement du solide (S) sur le trajet AB

Le mouvement du solide sur le trajet AB est uniformément accéléré.

- **1.1** Détermine la valeur algébrique *a* de l'accélération du mouvement du solide (S).
- **1.2** Calculer la valeur v_B de la vitesse au point B.
- **1.3** Faire l'inventaire des forces extérieures appliquées au solide (S) et les représenter sur un schéma.
- **1.4** Déterminer la valeur de la force \vec{F} .

2- Étude du mouvement du solide (S) sur le trajet BC

Au point B, l'action de la force \vec{F} cesse, le solide poursuit son mouvement rectiligne.

- **2.1** Faire l'inventaire des forces extérieures appliquées au solide et les représenter sur un schéma.
- 2.2 Déterminer la nature du mouvement de (S) en appliquant le théorème du centre d'inertie.
- **2.3** En déduire la vitesse v_C du mouvement du solide au point C.

3- Étude du mouvement du solide (S) sur le trajet CD

Le solide (S) aborde le trajet CD avec la vitesse de valeur $v_C = 3$ m/s et s'arrête en un point D'. L'accélération du mouvement est notée $\overrightarrow{a'} = a_x' \cdot \overrightarrow{i}$

- 3.1 Faire l'inventaire des forces extérieures appliquées au solide et les représenter sur un schéma.
- 3.2 Déterminer :
 - **3.2.1** la valeur algébrique $a_{\chi}{}'$ de l'accélération du mouvement en fonction de α et g ;
 - **3.2.2** la nature du mouvement.
- **3.3** Déterminer la longueur l' = CD'.
- **3.4** Dire si l'élève a gagné à ce jeu. Justifier la réponse.

EXERCICE 2 (5 points)

Au cours d'une séance de Travaux Pratiques, un groupe d'élèves d'un établissement de la place décide de vérifier expérimentalement les valeurs de l'inductance L et de la résistance r d'une bobine, de deux façons différentes.

1- Première expérience

Montage 1

Le groupe alimente d'abord la bobine à l'aide d'un générateur délivrant une tension continue. Le circuit est constitué du générateur de tension continue, de la bobine, d'un ampèremètre et d'un voltmètre. Le voltmètre mesure la tension $U_1 = 12 \text{ V}$ aux bornes du générateur. L'ampèremètre indique une intensité $I_1 = 0.24 \text{ A}$ dans le circuit.

Montage 2

La bobine est ensuite alimentée par un générateur de basses fréquences (GBF) délivrant une tension alternative sinusoïdale de fréquence f = 200 Hz, de valeur efficace $U_2 = 5$ V, mesurée par un voltmètre. L'ampèremètre mesure une intensité efficace $I_2 = 10$ mA.

- 1.1 Faire les schémas des deux montages en y faisant figurer le voltmètre et l'ampèremètre.
- **1.2** Déterminer la valeur de *r*.
- **1.3** Déterminer l'impédance Z_b de la bobine.
- **1.4** En déduire la valeur de l'inductance L de la bobine.

2- Deuxième expérience

Le groupe réalise un dipôle constitué par l'association en série de la bobine, d'un condensateur de capacité $C=1~\mu F$, d'un générateur de basses fréquences (GBF) et d'un ampèremètre. Le groupe dispose aussi d'un voltmètre qu'il branche aux bornes du GBF. La valeur efficace U de la tension aux bornes du générateur est maintenue constante et égale à 5 V.

- **2.1** Faire le schéma du montage.
- 2.2 Donner l'expression littérale de l'impédance totale du circuit.
- **2.3** Pour une fréquence $f = f_0 = 252$ Hz, la valeur de l'intensité efficace passe par une valeur maximale $I_0 = 0,1$ A.
 - **2.3.1** Nommer ce phénomène.
 - **2.3.2** Déterminer l'impédance totale du circuit à la fréquence f₀.
 - **2.3.3** Déterminer les valeurs de *r* et de L.
 - **2.3.4** Comparer les valeurs de *r* et de L trouvées au cours des deux expériences.
 - **2.3.5** Déterminer la valeur de la tension efficace U_e aux bornes du condensateur dans ces conditions.
 - **2.3.6** Comparer les valeurs efficaces de la tension d'alimentation U et de la tension U_e. Conclure.

EXERCICE 3 (5 points)

Toutes les solutions sont à 25°C et le produit ionique de l'eau est $K_e = 10^{14}$.

Un groupe d'élèves de Terminale D désire préparer puis doser une solution décide éthanoïque.

1- Préparation de la solution d'acide éthanoïque

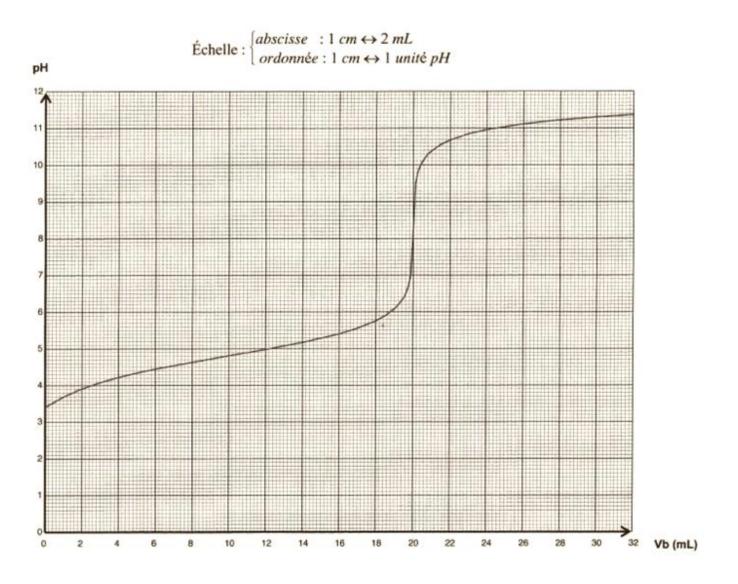
Le groupe d'élèves dispose d'une solution mère (S_1) d'acide éthanoïque de concentration $C_1 = 0,1$ mol/L et d'eau distillée.

À partir de la solution mère, le groupe souhaite préparer un volume $V_2 = 100$ mL d'une solution (S_2) de cet acide de concentration $C_2 = 10^{-2}$ mol/L. Pour cela il dispose :

- de deux pipettes (10 mL et 5 mL);
- d'une fiole jaugée de 100 mL;
- d'un bécher;
- d'une pissette contenant de l'eau distillée.
- **1.1** Vérifier que le volume de (S_1) à prélever $V_0 = 10$ mL.
- **1.2** Décrire le mode opératoire de la préparation de la solution (S_2) .
- **1.3** Le pH de la solution (S_2) est pH = 3,4.
 - **1.3.1** Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau.
 - **1.3.2** Faire l'inventaire des espèces chimiques présentes dans cette solution.
 - 1.3.3 Déterminer la concentration molaire volumique de chaque espèce chimique.
 - **1.3.4** Calculer la constante d'acidité K_A du couple acide éthanoïque / ion éthanoate.
 - **1.3.4** Vérifier que le pK_A du couple est égal à 4,8.

2- Dosage de la solution (S₂) d'acide éthanoïque

Le groupe dose un volume $V_A = 20 \text{ mL}$ de solution (S_2) par une solution B d'hydroxyde de sodium de concentration $C_B = 10^2 \text{ mol/L}$.


Le pH du mélange est mesuré au fur et à mesure que l'on verse la solution de soude. Le graphe $pH = f(V_B)$ est donné sur la *feuille annexe*.

- 2.1 Déterminer graphiquement les coordonnées du point d'équivalence E.
- **2.2** Retrouver la valeur de C_2 .
- 2.3 Donner la nature (acide ou basique) du mélange obtenu à l'équivalence. Justifier la réponse.
- **2.4** Retrouver graphiquement la valeur du pK_A .
- 2.5 Choisir parmi les indicateurs colorés ci-dessous celui qui convient à ce dosage. Justifier la réponse.

Indicateurs colorés	Hélianthine	Bleu de bromothymol (BBT)	Phénolphtaléine
Zone de virage	3,1 – 4,4	6,0-7,6	8,2 – 10

EXERCICE 4 (5 points)

- 1- La combustion complète d'une mole d'un composé organique A, de formule brute C_xH_yO fournit quatre moles de molécules de dioxyde de carbone et quatre moles de molécules d'eau. La molécule de A renferme un seul atome d'oxygène.
 - **1.1** Écrire l'équation-bilan de la réaction.
 - 1.2 Montrer que la formule brute du composé A est C₄H₈O.
 - 1.3 Donner les formules semi-développées des différents isomères possibles de A.
- **2-** Parmi ces différents isomères, un seul réagit avec la 2,4-D-N-P-H et donne un test négatif en présence de liqueur de Fehling.
 - **2.1** Préciser la fonction chimique de cet isomère.
 - **2.2** Donner la formule semi-développée et le nom de cet isomère.
- **3-** L'un des isomères de A, le butanal, est traité par une solution de permanganate de potassium acidifiée. Il donne un compose B.
 - **3.1** Écrire la formule semi-développée et donner le nom du composé B.
 - **3.2** Le produit B réagit avec le pentachlorure de phosphore (PCl₅) pour donner un composé organique C.
 - **3.2.1.** Écrire l'équation-bilan de la réaction.
 - **3.2.2.** Donner le nom du composé C.
- 4- On fait réagir l'éthanol sur le composé C. On obtient entre autres un composé organique D.
 - **4.1** Écrire l'équation-bilan de la réaction.
 - **4.2** Donner :
 - **4.2.1.** le nom de cette réaction chimique ;
 - **4.2.2.** les caractéristiques de cette réaction chimique ;
 - **4.2.3.** le nom du composé organique D.
 - **4.3** On fait réagir également l'éthanol sur le compose B. On obtient entre autres le même composé organique D.
 - **4.3.1.** Écrire l'équation-bilan de la réaction.
 - **4.3.2.** Donner le nom et les caractéristiques de cette réaction.

